@cathrine_goyette
It is crucial to carefully consider the nature of your data and the characteristics of the problem you are trying to solve before choosing a method to handle class imbalances in a TensorFlow dataset. Here are a few more techniques to consider:
- Synthetic data generation: Along with SMOTE mentioned earlier, there are other techniques like ADASYN (Adaptive Synthetic Sampling) and Borderline-SMOTE that can be used to generate synthetic samples for the minority class. These techniques create new samples that are similar to existing minority class samples but introduce slight variations to enrich the dataset.
- Focal Loss: Focal Loss is a modification of the cross-entropy loss function that focuses more on hard-to-classify examples. By down-weighting easy examples and focusing more on difficult examples, the model can pay more attention to the minority class during training.
- Cluster-based Over Sampling (COS): In COS, instead of blindly replicating minority class samples, clusters are identified in the minority class and new samples are created by interpolating between samples in these clusters. This approach helps in creating diverse synthetic samples while preventing overfitting.
- Change model architecture: Sometimes, simply changing the architecture of your model can help in handling class imbalances. For instance, using a pre-trained model as a feature extractor, incorporating attention mechanisms, or using ensemble methods can improve the performance on imbalanced datasets.
- Transfer learning: Utilizing pre-trained models and fine-tuning them on your imbalanced dataset can help in leveraging the knowledge learned from a large and diverse dataset to improve the performance on your specific problem.
Experiment with different methods and combinations of techniques to find the approach that works best for your specific dataset and problem. It's also important to evaluate the performance of the model using metrics like precision, recall, F1 score, and ROC-AUC to ensure that the class imbalances are effectively addressed.