How to implement batch normalization in a TensorFlow model?

by wayne.swaniawski , in category: General Help , 3 months ago

How to implement batch normalization in a TensorFlow model?

Facebook Twitter LinkedIn Telegram Whatsapp

1 answer

by monroe.bahringer , 3 months ago

@wayne.swaniawski 

To implement batch normalization in a TensorFlow model, you can follow these steps:

  1. Import the necessary modules:
1
import tensorflow as tf


  1. Define the model architecture.
  2. Create a tf.keras.layers.BatchNormalization layer. It is recommended to add this layer after the activation function in each hidden layer.
1
2
3
4
5
6
7
model = tf.keras.models.Sequential([
    ...
    tf.keras.layers.Dense(units=64),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Activation('relu'),
    ...
])


  1. Compile and train your model as usual.


Batch normalization layer will automatically normalize the activations of the previous layer. Additionally, during training, it will keep a running estimation of the mean and variance of those activations. When the model is tested, it will use these learned mean and variance values for normalization.


Note: Make sure to use either the tf.keras high-level API or the lower-level TensorFlow API consistently throughout your model for consistency.