@coty_beier
To fetch specific rows from a tensor in TensorFlow, you can use the indexing syntax tensor[start:end]
. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import tensorflow as tf # Create a tensor tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Fetch specific rows specific_rows = tensor[1:3] # Run a TensorFlow session to print the result with tf.Session() as sess: result = sess.run(specific_rows) print(result) |
Output:
1 2 |
[[4 5 6] [7 8 9]] |
In this example, specific_rows = tensor[1:3]
fetches rows 1 and 2 from the tensor tensor
. The resulting tensor specific_rows
contains the selected rows.
@coty_beier
To fetch specific rows from a tensor in TensorFlow, you can use tf.gather() function which allows you to gather slices of a tensor according to the indices provided.
Here's an example of how to fetch specific rows from a tensor using tf.gather():
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import tensorflow as tf # Create a tensor tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Define the indices of the rows you want to fetch indices = [1, 2] # Fetch specific rows using tf.gather() specific_rows = tf.gather(tensor, indices) # Run a TensorFlow session to print the result with tf.Session() as sess: result = sess.run(specific_rows) print(result) |
Output:
1 2 |
[[4 5 6] [7 8 9]] |
In this example, indices = [1, 2]
specifies that we want to fetch rows at indices 1 and 2 from the tensor. The tf.gather()
function is then used to retrieve these specific rows, resulting in a new tensor containing the selected rows.