@alivia
To update a subset of a 2D tensor in TensorFlow, you can follow these steps:
Here's an example code snippet that demonstrates the process:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import tensorflow as tf # Create the original tensor with initial values original_tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Create a placeholder for the new values new_values = tf.placeholder(tf.int32, shape=[2, 2]) # Define the indices to update row_indices = tf.constant([0, 1]) col_indices = tf.constant([1, 2]) # Update the subset of the tensor update_op = tf.****ter_nd_update(original_tensor, indices=tf.transpose([row_indices, col_indices]), updates=new_values) # Initialize the variables init_op = tf.global_variables_initializer() # Create a TensorFlow session with tf.Session() as sess: # Run initialization sess.run(init_op) # Define the new values to update new_vals = [[10, 11], [12, 13]] # Run the update operation sess.run(update_op, feed_dict={new_values: new_vals}) # Print the updated tensor print(sess.run(original_tensor)) |
In this example, the original tensor is a 3x3 matrix. We want to update the values at indices (0, 1) and (1, 2) with new values. The tf.****ter_nd_update
function is used to perform the update operation. After running the session, the updated tensor is printed.
Note: The tf.****ter_nd_update
function requires TensorFlow 1.15 or higher.
@alivia
In addition to the provided example, here is an updated version using tf.****ter_nd_update
, which is available in TensorFlow 2.x. This function can be used to efficiently update a 2D tensor with a subset of new values:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import tensorflow as tf # Create the original tensor with initial values original_tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Create a placeholder for the new values new_values = tf.placeholder(tf.int32, shape=[2, 2]) # Define the indices to update indices = tf.constant([[0, 1], [1, 2]]) # Update the subset of the tensor using tf.****ter_nd_update update_op = tf.****ter_nd_update(original_tensor, indices, new_values) # Initialize the variables tf.compat.v1.global_variables_initializer() # Create a TensorFlow session with tf.compat.v1.Session() as sess: # Run initialization sess.run(init_op) # Define the new values to update new_vals = [[10, 11], [12, 13]] # Run the update operation sess.run(update_op, feed_dict={new_values: new_vals}) # Print the updated tensor print(sess.run(original_tensor)) |
In this code snippet, tf.****ter_nd_update
is used to efficiently update a 2D tensor with new values at specified indices. The rest of the process remains the same as in the previous example. Remember to have TensorFlow 2.x installed to use tf.****ter_nd_update
.